Geronmetrics: Leading the Next Generation of Discovery in Aging

Karen Bandeen-Roche, Ph.D. Departments of Biostatistics, Medicine & Nursing Johns Hopkins University

> Gerontology Brown Bag Miami University December 8, 2005

Acknowledgments

 Hopkins Colleagues
 Linda Fried, Ron Brookmeyer, Yi Huang, Jeremy Walston, Qian-Li Xue

 Colleagues outside of Hopkins Luigi Ferrucci, Don Ingram, Richard Miller

 Funding / Institutional Support Johns Hopkins Older Americans Independence Center, National Institute on Aging, Alliance for Aging Research

Introduction Whither "geronmetrics"?

- "Measurement of constructs in aging"

 a.k.a.: econometrics, psychometrics, biometrics
 e.g.: generalized inflammation; frailty; aging
- Boring, no?
 - -NO!
- Rather: essential to

 Sensitivity for genetic, other discovery
 Theory operationalization, testing
 Specificity for genetic, other discovery
 Correctly targeted, evaluated interventions

Introduction The Frailty Construct

Fried et al., J Gerontol 56:M146-56; Bandeen-Roche et al., J Gerontol, in press

Frailty: Scientific Aims

- Validate theory that frailty is:
 - More than a marker of disease
 - More than severe disability
 - A syndrome: more than component parts

Specific Aims

- Drilling down: from phenotype to etiology
- Specificity: a measure tied explicitly to dysregulation
- Product: a refined summary variable

Outline

- Big picture: Biological aging

 Four measurement paradigms
 Partner: Alliance on Aging Research
- Application: Pro-inflammation

 Component underlying frailty
 Data: InCHIANTI (*Ferrucci et al., JAGS*,
 - 48:1618-25)
- Etiological mechanisms: A few words

Biological Aging

- Hypothesis: Individual specificity
 - Seems manifestly true... however:
 - Identifiable? Less manifestly true?
 - Animal evidence: e.g. dog breeds
- Goal: Surrogate measurement via biomarkers
 - Alliance for Aging Research Initiative
 - Import: Research, interventions to slow aging
- Previous attempts: disappointing
- Guiding Principles
 - Multivariate validation
 - Differentiation from disease, other cofactors of aging

Identifying Biological Aging Paradigm #1: Age-Relatedness

Challenges

- Age ≠aging
- Selection in studies: healthiest
- Methodological: Multiple outcomes
- Choice of measures: reliable; content-valid

Identifying Biological Aging Paradigm #2: Predictive Validity

 "Aging" = combination of agingrelated variables that "best" predicts outcome(s)

 <u>Methods</u>: Neural networks, regression trees, logic regression, etc. Identifying Biological Aging Paradigm #2: Challenges

 Distinction between "aging-related variables" and "outcomes of aging"

Agreement on "outcomes of aging"

Methodological

 Cross-validation
 Multiple outcomes

Identifying Biological Aging Paradigm #3: Latent Variables

Identifying Biological Aging Paradigm #3: Challenges

- Computing "measures" from model

 Option 1: "Average" in domains (e.g. principal components)
 - Option 2: Prediction "from" model
- Impact of modeling assumptions

 -"local independence" (homogeneity)
 -"model fit" ≠ "unique discovery"

Identifying Biological Aging Paradigm #4: Combinations

Compromises between methods

 Geek speak: penalization
 Plainer: weighting for emphasis

 Example: Latent variable model with fit weighted to emphasize age-relatedness of "aging" ("D")

Nice science + statistics problem

Application: Pro-Inflammation

• Central role: cellular repair

• A hypothesis: dysregulation key in adverse aging

- Muscle wasting (*Ferrucci et al., JAGS 50:1947-54;* <u>Cappola et al, J Clin Endocrinol Metab 88:2019-25</u>)
- Receptor inhibition: erythropoetin production / anemia (Ershler, JAGS 51:S18-21)

Difficult to measure. IL-1RA = proxy

Study: In CHIANTI

• Aim

Causes of decline in walking ability

• Brief design

- Random sample \geq 65 years (n=1270)
- Enrichment for oldest-old, younger ages
- Participation: > 90% in the primary sample

• Data

- Home interview, blood draw, physical exam
- So far: Two evaluations

Conceptual framework

Statistical methodology: SEM with latent variables (AMOS)

Observed variables

- Inflammation 5 cytokines
 IL-6, CRP, TNF-a, IL-1RA, IL-18
- Mobility functioning Z-score average

 Usual & rapid speed; muscle power;
 range of motion; neurological intactness
- Frailty: Fried et al., 2001 criteria
 - Exhaustion; grip strength; physical activity; walking speed; weight loss
 - Continuously measured versions
- Analyses accounting for: *age, gender*

Results

- LV method: measured = physiology + noise
 - Multivariate normal underlying variables, errors
 - Conditional independence of errors

Is there Value Added? In CHIANTI findings

• *YES*!

- Independent of age, sex, smoking, diseases:
 Up-regulation associated with
 - Worse mobility functioning [~ -.1 effect size]
 - Heightened frailty prevalence [by ~ 30%]
- "Up-regulation" is specific, sensitive
 - No individual cytokine adds to prediction
 - Up-regulation affords superior prediction over individual cytokines

More on Specificity

Etiological Mechanisms

- <u>Holy grail</u>?: What causes adverse aging?
 - Experimental data on humans: hard to come by
 - Observational, longitudinal data: central
- Cohort studies on aging abound
 - EPESE; CHS; HRS/ALIVE
 - Women's Health and Aging Study (WHAS)
 - In CHIANTI
- How to utilize existing data to most nearly address causality?

Causal Models

• Three queries (Pearl, 2000)

- Predictions
 - "Probabilistic causality" (von Suppes, 1970)
 - Is bad function probable among the inflamed?
- Interventions / Experiments (Bollen, 1989)
 - Association, temporality, isolation
 - Does bad function follow inflammation?
- Counterfactual
 - Does one's function change if inflamed vs. not?
 - Neyman, 1923; Stalnaker, 1968; Lewis, 1973; Rubin, 1974; Robins 1986; Holland 1988

Toward "causal" inferences?

- Propensity scoring (Rosenbaum/Rubin, 1983; Imai/Van Dyk, 2004)
- <u>My work</u>: Implementation amid latent variables
- Whichever causal method: Assumptions

Propensity Score Model

- $I_1 \sim age$, cancer hx, CVD hx
- $I_2 \sim age$, gender, diabetes hx, smoking hx

Inflammation Effects (Summary 2)

raw adjusted PS-full PS-red. diab/sm young cancer

Recap

- Presented: Frameworks for measurement

 of complex geriatric health states
 that incorporating biological knowledge
 integrating causal inference methods
- Demonstration: Inflammation and adverse outcomes in In CHIANTI

Future Goals

- Extension across biological systems
- Cross-validation across populations
- Assessment of extent to which "associations" > "mechanisms"
- Translation into interventions

Research needed

- Theory elicitation, incorporation
- Methods for synthesizing inferences across multiple data sets
- Best methods for deriving measures "M" for subsequent usage
- Surrogacy : "M" strongly relates to aging (A); treatment independent of M given A

Implications

- Refined understanding of aging states and their measurement
 - Integrating systems biology
 - Increasing sensitivity, specificity
- Heightened accuracy, precision for

 Delineating etiology
 Developing and targeting interventions